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The tensile instability in smoothed particle hydrodynamics results in a clustering
of smoothed particle hydrodynamics (SPH) particles. The clustering is particularly
noticeable in materials which have an equation of state which can give rise to negative
pressures, but it can occur in gases where the pressure is always positive and in
magnetohydrodynamics (MHD) problems. It is a particular problem in solid body
computations where the instability may corrupt physical fragmentation by numerical
fragmentation which, in some cases, is so severe that the dynamics of the system
is completely wrong. In this paper it is shown how the instability can be removed
by using an artificial stress which, in the case of fluids, is an artificial pressure.
The method is analyzed by examining the dispersion relation for small oscillations
in a fluid with a stiff equation of state. The short and long wavelength limits of the
dispersion relation indicate appropriate parameters for the artificial pressure and, with
these parameters, the errors in the long wavelength limit are small. Numerical studies
of the dispersion relation for a wide range of parameters confirm the approximate
analytical results for the dispersion relation. Applications to several test problems
show that the artificial stress works effectively. These problems include the evolution
of a region with negative pressure, extreme expansion in one dimension, and the
collision of rubber cylinders. To study this latter problem the artificial pressure is
generalized to an artificial stress. The results agree well with the calculations of other
stable codes. c© 2000 Academic Press

1. INTRODUCTION

If a solid is stretched then attractive forces between the atoms resist the stretching. When
the solid is compressed repulsive forces between the atoms resist the compression. In the
continuum description the attractive forces produce an elastic pressure which becomes
negative when the solid is stretched and positive when it is compressed. For an ideal solid
without defects, a stable configuration can be reached with the elastic forces balancing the
imposed force until the plastic limit is reached. Most real solids have defects, and the solid
breaks and fragments under impact.
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If a solid is simulated using the particle method smoothed particle hydrodynamics (SPH)
the solid is replaced by a set of SPH particles [1–3]. The forces between these particles are
derived from the equations of motion and they depend on the pressure. When the pressure is
positive the SPH particles repel each other just as the atoms do. When the solid is stretched
the SPH particles attract each other. However, unlike the behavior of the atoms in a solid,
the attraction can result in an instability which shows up as particles forming small clumps.
This instability was first studied in detail by Swegleet al. [4] who related the instability
to a combination of the negative pressure and the sign of second derivatives of the SPH
interpolating kernel. A very comprehensive study of the instability was made by Morris [5].

The instability is also known to occur in gas dynamics problems where the pressure is
always positive [6], though detailed studies of SPH for astrophysical gas dynamics using
the cubic spline kernel [7] do not show this clumping. An instability identical to the tensile
instability arising from a change in sign of the magnetic field stress tensor in magneto-
hydrodynamics (MHD) was discovered by Phillips and Monaghan [8] which they analysed
through the dispersion relation for MHD waves.

There have been a number of attempts to eliminate this tensile instability. Morris [5]
examined changes to the SPH interpolating kernel which, while successful in some cases,
were not uniformly satisfactory. Randles and Libersky [9] used dissipative terms, which they
call conservative smoothing, to remove the instability. However, this is not satisfactory in all
cases [10]. Johnson and Beissel [11] combine normalizing the kernels to handle boundary
effects with a quadratic kernel to reduce the tensile instability. Unlike the cubic spline
kernel the derivative of their kernel is nonzero at the origin and in this respect the kernel
is similar to one proposed by Schussler and Schmitt [6]. However, the second derivative of
the quadratic kernel of Johnson and Beissel [11] is discontinuous and this makes the kernel
more dispersive than the cubic spline and more sensitive to particle disorder. The kernel of
Schussler and Schmitt [6] does not even have continuous first derivatives.

SPH can be considered as a simple example of the class of meshless methods (for a
review see [12]). Dilts [13] makes use of one formulation of the meshless methods where
SPH is generalized by using an interpolant which gives accurate derivatives regardless of
the positions of the SPH particles. These more accurate results require much more work
(a factor 7 to 8 times slower than standard SPH) so that even if the tensile instability is
eliminated entirely the method may not be competitive with other techniques. However,
despite good results for a number of tests, the tensile instability still occurs though its
growth is much smaller (by nearly two orders of magnitude in some cases) than for standard
SPH. In a different study of meshless methods Beissel and Belyschko [14] found a short
wavelength instability which they removed by introducing an artificial quadratic term into
their variational principle (see their Eq. (19)).

Some computational studies of fracture in brittle materials have been based on SPH
simulations (see for example [15, 2]) which adopt the practical view that brittle solids
break up before a tensile instability can grow significantly. Their simulations incorporate
a damage model which describes the growth of small fractures and the resulting loss of
strength during an impact. With this model the brittle solid fragments before the tensile
instability is significant. Despite this practical approach to handling the tensile instability
problem it can hardly be called a desirable situation to have a numerical instability competing
with a physical instability. The aim of this paper, therefore, is to modify the standard SPH
equations so that the tensile instability is eliminated entirely and, with it, the confusion
between physical and numerical fragmentation.
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The clumping of the SPH particles is unphysical because it will be prevented in a real solid
by the repulsive forces between the atoms. This suggests that the SPH tensile instability
can be prevented by introducing a small repulsive term between the SPH particles. In this
paper we propose a form for this repulsive term and show that the tensile instability can
be removed while retaining the desirable features of SPH. The changes to a standard SPH
program are minor.

The plan of this paper is to first study how this repulsive term affects the dispersion
relation for small vibrations in a fluid with a stiff equation of state. In this case the repulsive
term is equivalent to an artificial pressure. The analysis of the dispersion relation indicates
how to relate the repulsive term to the fluid pressure, and indicates appropriate values for
the parameters. Applications to a circular patch of fluid with negative pressure, and to the
stretching of fluid, show that the repulsive term removes the tensile instability. Quantitative
measures of the accuracy are provided by a Lagrangian patch test similar to that used by
Dilts [13]. To show that the method works well for two-dimensional elastic materials we
simulate the collision of two rubber cylinders for which the artificial pressure is replaced
by an artificial stress. Finally, to confirm that there are no undesirable effects if the artificial
pressure is used in complex fluid dynamical simulations, we simulate the sinking of a
weighted box into a tank of liquid. In this example the simulation without the artificial
pressure does not show sign of the tensile instability except possibly at the tip of the
plunging wave where fragmentation can occur. The simulation with the artificial pressure
retains the good features of the simulation without the artificial pressure while decreasing
the breakup of the tip of the plunging wave. These SPH simulations give good agreement
with experiment [16].

2. THE REPULSIVE TERM

The acceleration of SPH particlea in a fluid is given by

dva

dt
= −

∑
b

mb

(
Pa

ρ2
a

+ Pb

ρ2
b

+5ab

)
∇aWab+ g, (2.1)

where the summation is over all particles other than particlea (though in practice only near
neighbors contribute because the kernelW has a finite range),P is the pressure, andρ
is the density.5ab produces a shear and bulk viscosity (for further details, see [17, 18]).
The kernelWab (see below) is a function of the distancerab between the particlesa and
b, and∇a denotes the gradient taken with respect to the coordinates of particlea. A body
force/massg has been included.

The equation of state we use has the form

P= ρ0c2
0

γ

[(
ρ

ρ0

)γ
− 1

]
, (2.2)

whereρ0 is the reference density,c0 is the speed of sound at the reference density, andγ is
taken as 7 to make the equation of state stiff.

In this paperW is the cubic spline kernel normalized for two-dimensional systems [17].
Writing q= rab/h this kernel has the following form:
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If q< 1 then

W(r, h)= 10

7πh2

(
1− 3

2
q2+ 3

4
q3

)
,

else, if 1<q< 2, then

W(r, h)= 10

28πh2
(2−q)3,

elseW= 0.
The repulsive force must increase as the separation between the two particlesa andb

decreases. A possible form for this force is the Lennard–Jones force. However, in the present
case where we are removing a numerical instability, it seems more natural to write the
repulsive force in terms of the kernel. A suitable function which increases as the separation
decreases is

fab= W(rab)

W(1p)
, (2.3)

where1p denotes the average particle spacing in the neighborhood of particlea (propor-
tional to the interpolation length scaleh which determines the width of the kernel).

We then replace

Pa

ρ2
a

+ Pb

ρ2
b

+5ab,

with

Pa

ρ2
a

+ Pb

ρ2
b

+ R fn
ab+5ab, (2.4)

wheren> 0 and the factorR depends on the pressure and density. The repulsive force term
can be considered an artificial pressure.

For the cubic spline kernel the ratioW(0)/W(1p) has the value 4 ifh equals1p
and, if h= 1.31p (the typicalh used in this paper), the ratio is 2.2. For the fluid dy-
namical simulations we taken equal to 4, and withh equal to 1.31p, the repulsive force
increases by a factor of∼23 asrab decreases from1p to zero. The ratioW(0)/W(1p)
decreases rapidly in the domainh≤ rab≤ 2h. For example, in this domain, the cubic spline
kernel decreases according to (

2− rab

h

)3

, (2.5)

and the repulsive term therefore decreases as(
2− rab

h

)3n

. (2.6)

In the fluid dynamical simulations described below,n is 4 and only the nearest neighbors
are significantly affected by the artificial pressure.

The factorR can be determined by relating it to the pressure. We write

R= Ra+ Rb, (2.7)
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and anticipating later results we determineRa by the rule, ifPa< 0

Ra= ε|Pa|
ρ2

a

, (2.8)

otherwiseRa is zero. The rule forRb is obtained by replacinga with b in (2.8). A typical
value ofε is 0.2, though the appropriate value depends onh, n, and the number of spatial
dimensions.

For problems involving liquids there is slight tendency for the particles to form local
linear structures. These are removed if a small artifical pressure is included even if the
pressure is positive. Accordingly, ifPa> 0 andPb> 0,

R= 0.01

(
Pa

ρ2
a

+ Pb

ρ2
b

)
. (2.9)

However, the effects produced by this small pressure are largely cosmetic and are less than
1% in all the examples studied.

In the continuum limit the summations can be replaced by integrals. This limit assumes
the number of particles tends to infinity and1p→ 0. In addition the number of particles
within the range of the kernel should also tend to infinity (to guarantee the error in the
interpolation integrals vanishes) which requires1p/h→ 0. The artificial pressure term in
the case whereP is negative throughout then becomes

ε∇P

ρ

∫
Wn(r )∇W(r ) dr

Wn(1p)
. (2.10)

For a gaussian kernel inN dimensions the artificial pressure term becomes

ε

(n+1)N/2+1

∇P

ρ
, (2.11)

where a term exp(n1p2/h2) has been replaced by 1 as required for the continuum limit.
Sinceε∼ 0.1 the artifical pressure term is typically 0.4% in two dimensions and 0.2%
in three dimensions. However, because the artificial pressure decreases very rapidly with
separation the integral is a poor approximation to the particle summation. The best estimate
of the effect of the artificial pressure term is from dispersion relations and dynamical
simulations. These are considered below.

3. THE DISPERSION RELATION

We consider an infinite two dimensional lattice of SPH particles with nearest neighbours
separated by a distance1p. The initial density ¯ρ is constant and the mass per SPH particle
m is ρ̄(1p)2.

Theory

The inviscid equations of motion are the acceleration equation,

dva

dt
=−

∑
b

m

(
Pa

ρ2
a

+ Pb

ρ2
b

+ R fn
ab

)
∇aWab, (3.1)
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the continuity equation,

dρa

dt
=
∑

b

m(va− vb) · ∇aWab, (3.2)

and

dra

dt
= va. (3.3)

We assume a perturbation solution of the form

va = V k̂ei (k·r̄a−ωt), (3.4)

ra = r̄a+ Xk̂ei (k·r̄a−ωt), (3.5)

and

ρa= ρ̄+ Dei (k·r̄a−ωt), (3.6)

whereV is much smaller than the speed of sound,k is the wave vector,̂k denotesk/|k|,
andr̄a is the unperturbed position of particlea. From the equation of state,

P= ρ0c2
0

γ

[(
ρ

ρ0

)γ
− 1

]
, (3.7)

we find, on replacingρa with (ρ̄+ δρa), that

Pa

ρ2
a

= P̄

ρ̄2
+ Bδρa, (3.8)

where

B= c2
s

ρ̄2

[
1− 2

γ

(
1−

(
ρ0

ρ̄

)γ)]
. (3.9)

The speed of soundcs is given by

c2
s = c2

0

(
ρ̄

ρ0

)γ−1

. (3.10)

and

P̄

ρ̄
= c2

s

γ

[
1−

(
ρ0

ρ̄

)γ ]
. (3.11)

Substituting the expressions (3.4) to (3.9) into the equations of motion, we find

ω2= 2P̄

ρ̄
S1+ Rρ̄S2+ Bρ̄2S2

3, (3.12)
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where

S1= (1p)2
∑

[1− cos(k · r̄b)]∇2W, (3.13)

S2= (1p)2
∑

[1− cos(k · r̄b)]∇( f n∇W), (3.14)

S3=1p
∑

sin(k · r̄b)k̂ · ∇W, (3.15)

and the summations are over all particles. In the expressions for theSj the origin of the
coordinate system has been shifted to the unperturbed position of particlea, andW denotes
W(rb).

Short Wavelength Limit

Because the tensile instability begins with the clumping of pairs of particles it is a short
wavelength instability. There are no simple general approximations to the dispersion relation
in this case, but useful information can be found easily by evaluating the summations for
the case whereh is1p (so that only nearest and next nearest neighbors contribute), andk
has the valueπ/1p (which further reduces the number of contributing terms) and the wave
propagates along thex axis. We find

ω2= 30

7π(1p)2

(
5.71P̄

ρ̄
+ Rρ̄[1+ 3n+ 2(2−

√
2)3n+1(3n+ 3−

√
2)]

)
. (3.16)

If n> 2 the factor multiplyingRρ̄ can be approximated by(1+ 3n). If P> 0 the system is
stable withR= 0. If P< 0 the system is stable ifR satisfies the condition

R≥ 5.71|P̄|
(1+ 3n)ρ̄2

. (3.17)

Accordingly, if h=1p andn= 4 we can stabilize the system by choosingR≥ 0.44P̄/ρ̄
and therefore takeε= 0.22. The caseh=1p is of course is very simple because there is
only a contribution from nearest and next nearest neighbors. However, it does indicate the
appropriate form ofR for the later applications where 1.3< h/1p< 1.5.

The dispersion relation for a one-dimensional system can be obtained easily from (3.12)
to (3.15). In this case the value ofR for stability whenk=π1p and h=1p is given
by

R= 4

3n+ 2

|P̄|
ρ̄2
, (3.18)

so that

ε= 2

3n+ 2
(3.19)

andε= 0.14 if h=1p andn= 4. If h= 1.31p we findε= 1.6/(2.9n+ 1.6)which has the
value 0.11 ifn= 4. For the caseh= 1.51p andn= 4 we findε= 0.06. These results show
that the stability of the system increases ash/1p increases.
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Long Wavelength Limit

If k is sufficiently small, andh is sufficiently large compared to the particle spacing, the
summations can be replaced by integrals. We find

ω2= k2

(
2P̄

ρ̄
W̃ + Rρ̄Q+ Bρ̄2W̃2

)
, (3.20)

whereW̃ is the two-dimensional Fourier transform ofW,

W̃=
∫

W(r)ei k·r dr , (3.21)

andQ is given by

Q= 1

(1+ n)

∫
ei k·r Wn+1(r)

Wn(1p)
dr . (3.22)

We can estimate the form ofQ by evaluating the integral for a Gaussian kernel:

W(r)= e−(r/h)2

πh2
. (3.23)

We find

Q= Rρ̄

(n+ 1)2
en1p2/h2

e−k2h2/4(n+1). (3.24)

If k is sufficiently small we can replacẽW with 1 because the kernels are normalized to
1. In this case (3.20) becomes

ω2= k2c2
s + k2 Rρ̄

(n+ 1)2
en1p2/h2

. (3.25)

If P> 0 we can takeR= 0 and (3.25) is the exact dispersion function. The estimate of
R from the short wavelength limit suggests thatR depends onn primarily through a factor
1/(1+ 3n). To minimize errors in the long wavelength limit we therefore choosen to
minimize the functionG defined by

G(n)= en1p2/h2

(1+ 3n)(n+ 1)2
. (3.26)

In SPH calculations 1≤ h/1p≤ 1.5p. If h/1p= 1 the minimum occurs forn= 2.3. How-
ever, in this paper we normally take 1.25≤ h/1p≤ 1.5. For the lower limit the minimum
occurs forn= 3.9. For the upper limit the minimum value ofG is 0.015 atn= 6, butG
never exceeds 0.024 for alln in the range 3< n< 7 and has the value 0.018 forn= 4. In
the case of the Gaussian kernel we can therefore taken= 4 for 1.25≤ h/1p≤ 1.5 with
confidence that the deviation from the exact long wavelength dispersion relation is close to
the minimum.
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Finally we note that the long wavelength limit of the dispersion relation in the case
P< 0, h/1p= 1.5, n is 4, andε is 0.2, is approximately

ω2= k2c2
s

(
1+ 0.04

|ρ0− ρ̄|
ρ̄

)
. (3.27)

Provided that the relative deviation of the density from the reference state is small the errors
in the dispersion relation are negligible.

The cubic spline kernel is similar in form to a Gaussian kernel and the analysis above sug-
gests that a value ofn∼ 4 will also be satisfactory for the cubic spline if 1.21p< h< 1.51p.
On the basis of the results for the Gaussian kernel we can expectε >0.2 for h/1p= 1 and
smaller values ofε for stability if h/1p is larger.

Numerical Results

The dispersion relation involves a number of parameters includingε, n, andρ̄. In addition
the dispersion relation can vary with the direction of propagation on the lattice. In this section
we describe results for different values of these parameters.γ is 7 andh is 1.31p for all
the calculations except those showing the variation of stability with variations inh/1p.

Reference dispersion.To provide a reference for the variations we show in Fig. 1 the
dispersion relation for ¯ρ equal to 1.05 and no artificial pressure. The unit of length is1p.
The figure shows the variation ofω/cs with k. As expected the graph is linear for sufficiently
small k, rises to a maximum fork∼π/2, and then decreases. The system is stable. It is
clear from this graph that the dispersion relation is significantly in error fork> 1 and the
error is∼5% whenk is 0.6. The deviation from the correct linear relation can be predicted
from the Fourier transform of the kernelW.

Varying n. Figure 2 shows the dispersion relation for the case ¯ρ= 0.95ρ0 and n=
(2, 4, and 6). The direction of propagation is along thex axis andε is 0.2. In this case, in
the absence of the artificial pressure, the particles clump and the system is unstable.

FIG. 1. Reference dispersion relation. Graph showsω/cs against wave numberk. All lengths are in units of
the particle spacing1p. The density ¯ρ is 1.05ρ0.
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FIG. 2. Dispersion relation forn= 2(s), 4(d), and 6(e), ρ̄= 0.95 andε= 0.2.

The dispersion curves forn equal to 4 and 6 show that the system is stable. Ifn is 2
the system is unstable (ifω2 is negative the points of the graph are placed on thek axis),
with the instability appearing fork close toπ . This instability is to be expected because the
previous analysis of the short wavelength instability shows that ifn is 2 the value ofε for
stability is approximately twice that forn equal to 4. The value ofε for marginal stability in
the case wheren is 4 andh/1p is 1.3 is approximately 0.19 (see below). In the caseh/1p
is 1.5 the criticalε= 0.10.

The graphs of Fig. 2 show that the deviations produced byn equal to either 4 or 6 are
not significant in the regionk< 0.6, where the dispersion curve can be expected to be
accurate. In this region the dispersion curve forn equal to 4 is more accurate than whenn
is 6. Elsewhere the deviation of the dispersion with artificial pressure is comparable to the
deviation of the reference dispersion curve from the exact linear relation. A good choice
for n appears to be 4 since this combines good stability properties with a small error in the
long wavelength limit.

Varying ρ̄. Figure 3 shows the dispersion curve for ¯ρ/ρ0= (0.95, 1.0, and 1.05) when
n= 4, ε= 0.2 and the propagation is along thex axis. The dispersion curves are nearly
identical fork<π/2 with differences approximately 1% fork< 0.6. The least stable case
is ρ̄= ρ0 sinceP̄ is zero and the artificial pressure is zero.

Varying ε. Figure 4 shows the dispersion curve whenn is 4, ρ̄= 0.95ρ0, h= 1.51p,
andε= (0.10, 0.125, and 0.15). The critical value ofε is 0.1. Ifh= 1.31p the critical value
of ε is close to 0.19. Similar results are found for other values of ¯ρ <ρ0.

Varying the propagation direction.Figure 5 shows the effect of different propagation
directions whenn is 4,h/1p= 1.3, ρ̄= 0.95ρ0, andε is 0.2. Propagation along thex and
y axes is the least stable but these results show that all directions are stable.

Varying h. Figure 6 shows the dispersion relation forh/1p= (1.0, 1.25, 1.50) withn= 4
andε= 0.2. As expected from the previous analysis the caseh/1p= 1 is just unstable and
the casesh/1p> 1.2 are stable. The larger values ofh give greater dispersion.

Summary of dispersion results.These results show that the estimates of the parameters
in the artificial pressure from the short and long wavelength limits of the dispersion relation
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FIG. 3. Dispersion relation withn= 4, ε= 0.2, and ¯ρ/ρ0= 0.95(s), 1.0(d), and 1.05(e).

FIG. 4. Dispersion relation withn= 4, ρ̄= 0.95ρ0, h= 1.51p, andε= 0.10(s), 0.125(d), and 0.15(e).

FIG. 5. Dispersion relation showing the effects of propagation direction with angle in degrees from the
x axis= 0(s), 30(d), and 45(e) for the casen= 4, ρ̄= 0.95ρ0, andε= 0.2.
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FIG. 6. The dispersion relation for differenth/1p for n= 4, ε= 0.2, and ¯ρ= 0.95ρ0. Results shown for
h/1p= 1.0(s), h/1p= 1.25(d), andh/1p= 1.5(e).

are a good guide for the direct calculation of the dispersion relation. In particular, the choice
n= 4 results gives stability with a small value ofε which introduces negligible errors in the
exact dispersion relation. The value ofε required for stability is smaller ash/1p increases
for a fixed value ofn.

4. SIMULATIONS OF FLUIDS AND SOLIDS

The results from the dispersion analysis do not guarantee that in highly nonlinear problems
a different choice ofε might be necessary, or even that the tensile instability might persist.
We now consider a series of examples which illustrate the effectiveness of the artificial
pressure term. The first of these is a two-dimensional problem similar to that considered
by Swegleet al. [4]. In this case the perturbations are small. The second problem is the
simulation of a one-dimensional fluid under extreme expansion where comparisons can be
made with an exact solution. The third is the collision of rubber cylinders which provides
a severe test of how effectively SPH handles tension and compression across a thin elastic
layer. Because this problem involves the solution of the elastic equations it is necessary to
generalize our artificial pressure to an artificial stress term. Finally we consider a complex
problem which involves a weighted box sinking into a tank of fluid.

Dynamics of a Disk

In this section we consider a disk of fluid with the standard equation of state and ¯ρ equal
to 0.98. The particles were initially set up on a rectangular 50× 50 grid and the particles
within a circle of radius of 0.1 were kept. This produces small perturbations around the
boundary which is not initially circular. As for the dispersion calculationsh is 1.31p and
γ is 7. A variant of the leap-frog algorithm was used for the time stepping (see Appendix).
The SPH viscosity (see [17]) was included usingα equal to 0.01 andβ equal 0.02. Figure 7
shows the positions of the SPH particles after 1000 steps when there is no artificial pressure.
The clumping seen in this figure is similar to that found by Swegleet al. [4]. In Fig. 8 the
particle positions are shown at the same time as for figure 7, but calculated using the artificial
pressure withn equal to 4 andε equal to 0.2. The clumping has disappeared.
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FIG. 7. The positions of the SPH particles in a disk with initial velocity zero, ¯ρ= 0.95ρ0 andε= 0.

Extreme One-Dimensional Expansion

The previous example does not give quantitative estimates of the accuracy of the mod-
ified SPH. To estimate the errors it is convenient to have an exact solution and this can be
obtained for a problem similar to that considered by Dilts [13] who studied the behavior of
one-dimensional SPH simulations when the material was subjected to extreme expansion. In
practice extreme expansion is not necessarily accompanied by a large decrease in the density
unless there are significant thermal effects. For example, in the two-dimensional expanding
ellipse problem [19], the density remains constant to within 2% because contraction from the
sides compensates the expansion. However, the expansion test does provide some useful in-
formation about the effectiveness of the artificial pressure term and its effect on the accuracy.

The system of equations considered by Dilts has the undesirable feature of changing from
hyperbolic to elliptic depending on the expansion. For this reason we consider a similar
system which has an exact solution but remains hyperbolic.

FIG. 8. As in Fig. 7 but withε= 0.2.
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We assume that the equation of state has the form

P= c2
0(ρ − ρ0), (4.1)

and the initial velocity isζ0x. It is easy to show that a solution exists with density constant
in space, andζ varying with time according to

ζ(t)= ζ0

1+ ζ0t
, (4.2)

with the velocity at timet and positionx beingζ(t)x, and the position of a particle with
initial positionx0 is x0(1+ ζ0t). Assuming the initial density isρ0 the density is then given
as a function of time by

ρ(t)= ρ0

1+ ζ0t
, (4.3)

and the pressure is given by

P=−c2
sρ0ζ0t

1+ ζ0t
. (4.4)

The pressure therefore becomes negative and the unmodified SPH would be expected to
show the tensile instability.

For the simulations we takeh= 1.51p with 1p= 0.1, ζ0= 1, the initial density
ρ= ρ0= 10, and the SPH particles are uniformly distributed in−10< x< 10. In addition
we use a standard SPH viscosity with coefficientα= 1. The viscosity is turned on regardless
of whether the density is increasing or decreasing. Simulations were run with no viscosity
with similar results, but it is useful here to include the viscosity to show first that the tensile
instability occurs in spite of the extra dissipation, and second that the viscosity does not
introduce large errors into the calculation.

Figure 9 shows the velocity field (in units ofc0) for the case wheret = 2.26, ζ0= 1,
and the system has expanded by a factor of approximately 3. The velocity for the case
ε= 0 shows a stepped structure arising from the clumping of particles associated with the
tensile instability. There is significant fluctuation near the boundaries because of boundary
interpolation errors. The velocity for the case whereε= 0.2 does not show the stepped
structure and it differs from the exact solution by less than 2% except close to the boundaries.

Figure 10 shows the velocity for particle positions near the centre of the material when
t = 2.94. Whenε= 0 the tensile instability occurs and the particles move together. When
ε= 0.2 the particles remain at constant separation. In Fig. 11 the density is shown for
a particle close to the center of the material. Whenε= 0, the density remains close to
the exact value untilt ∼ 4 and then rapidly diverges due to the clumping from the tensile
instability. In the case whereε= 0.2 the density always remains close to the exact value.
These results were repeated using two different time stepping routines. One of these was
a mid point predictor corrector and the other was a predictor corrector version of the leap
frog algorithm (see Appendix). The results in each case varied by less than 1% except that
the growth of the errors in the caseε= 0 was larger in the case of the leap frog algorithm.
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FIG. 9. The velocity for the extreme one dimensional expansion against distancex. (a) The caseε= 0,
(b) the caseε= 0.2. Other details are given in the text.

The Collision of Rubber Cylinders

Swegle [20] used the collision of rubber cylinders to study the effects of the tensile
instability. These cylinders should bounce off each other without disintegrating. Other
codes (see, for example, [20, 21]) simulate the bounce without difficulty, though Sulsky
et al. [21] found it necessary to use their second formulation in which the forces were
averaged. Swegle found that an SPH simulation of the collision resulted in fragmentation.
The fragmentation was greatest when the particles were initially placed on a square grid and
least when they were on a grid cylindrically symmetric about the centre of each cylinder.
In the following these cylinders will generally be referred to as rings.

This collision problem is a severe test of how well an algorithm handles the compression
and tension across a thin shell of material which is bent. The acceleration equation is

∂vi

∂t
= 1

ρ

∂σ i j

∂x j
, (4.5)

whereσ i j is the stress tensor,vi is the i th component of the velocity, andx j is the jth
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FIG. 10. The same simulations as shown in Fig. 9 but now on a finer scale to show the particle spacing.
(a) The case whereε= 0, (b) the caseε= 0.2.

cartesian component of the position vector. The stress tensor can be written

σ i j =−Pδi j + Si j , (4.6)

where the pressure is given by

P= c2
0(ρ − ρ0). (4.7)

Herec0 is the speed of sound andρ0 is the reference density. We assume a linear elastic law
with the rate of change ofSi j given by

dSi j

dt
= 2µ

(
ε̇ i j − 1

3
δi j ε̇kk

)
+ SikÄ jk +Äik Sk j , (4.8)

where

ε̇ i j = 1

2

(
∂vi

∂x j
+ ∂v

j

∂xi

)
(4.9)
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FIG. 11. The central density variation with time for the extreme on dimensional expansion. (a) The caseε= 0,
where the SPH result is shown bys and the theoretical result bye. (b) The caseε= 0.2 with the same notation
as for (a).

and

Äi j = 1

2

(
∂vi

∂x j
− ∂v

j

∂xi

)
. (4.10)

The SPH form of the acceleration equation for particlea is

dvi
a

dt
=

N∑
b=1

mb

(
σ i j

a

ρ2
a

+ σ
i j
b

ρ2
b

+ Ri j
ab f n+5ab

)
∂Wab

∂x j
b

, (4.11)

whereRi j is an artificial stress given by the following rule which generalizes the rule used
earlier for nonelastic fluids. We write

Ri j
ab= Ri j

a + Ri j
b (4.12)

and chooseRi j
a andRi j

b according to the rule that ifσ i j
a > 0 then

Ri j
a =−εσ i j

a ; (4.13)

otherwiseRi j
a is zero. The rule forRi j

b is obtained by replacinga with b.
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To complete the SPH equations we need expressions forε̇ i j andÄi j in order to evaluate
the right-hand side of (4.8). We use the standard SPH forms of these expressions (see, for
example, [2]). In addition we use the XSPH correction to the velocity of a particle [22] so
that particlea is moved using an average velocity given by

dx j
a

dt
= v j

a + 0.5
∑

b

mb

ρ̄ab

(
v

j
b − v j

a

)
Wab, (4.14)

where ¯ρab is (ρa+ ρb)/2. The use of an average velocity is analogous to Sulskyet al. [21]
using an averaged acceleration for this problem. The correction to the velocity introduces
a term of orderh2 which is consistent with the orderh2 errors in the other equations. The
correction to the velocity introduces dispersion but it is not dissipative [22] which can be
seen from the fact that reversing the velocity in (4.14) will reverse the particle trajectories.
Moving the particles according to (4.14) does not affect the conservation of linear and
angular momentum [22].

In the simulations the unit of density isρ0, the unit of length is 1 cm, the unit of velocity
isc0 (852 m/s), and the unit of stress isρ0c2

0. In these unitsµ (see (4.8) is 0.22. We study two
rubber cylinders, each with inner radius 3 cm and outer radius 4 cm. Each ring moves with
speed 0.059c0 so the relative velocity is 0.12c0. The particles comprising the rings were
initially set on a cartesian grid since this is the configuration which Swegle [20] found to be
most unstable. Those particles within the circles defining the inner and outer radii were kept.
This gives the boundaries of the rings a slighly roughened appearance. The initial nearest
neighbor separation was 0.1 cm,h= 1.51p and the SPH viscosity coefficientα= 1.

Figure 12 shows the positions of the two rings just after maximum compression for
the case whereε= 0. The rings fracture as in Swegle’s [22] calculation, though here the
fragments are larger and, remarkably, reattach later in the calculation. Figure 13 shows the
positions of the two rings for the case whereε= 0.15. Figures 13b and 13c correspond
approximately to the TODY results after 500 and 1000µs, respectively. The rubber rings

FIG. 12. Rubber rings shortly after maximum compression showing fracture in a collision simulated with
ε= 0. Other details are given in the text.
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FIG. 13. Rubber rings bouncing without fracture in a collision simulated withε= 0.2. (a) The rings at impact,
(b and c) during impact, and (d, e, and f) the rings as they bounce off each other and begin to oscillate freely.

bounce off each other without fracturing and they continue to oscillate as shown in Figs. 13e
and 13f. If we run the simulation withε= 0.1, one small fracture begins to open up in
each ring and then closes before the rings have bounced apart. These results confirm the
effectiveness of the artificial stress term.

Comparison with the results of Swegle [22] shows that the differences between the present
calculations and the calculations using the TODY code are within the measurement errors
for the maximum vertical diameter, and within 10% for the maximum horizontal diameter
for times of 500 and 1000µs after impact.

5. NONLINEAR WAVE GENERATION

The final example we consider is the SPH simulation of a weighted box sinking rapidly
into a wave tank [16]. As the weighted box sinks it drives water from underneath it, and
this forces the water near the box to rise and form a plunging wave. A solitary wave is also
generated. A detailed comparison between dynamics of this system (including both waves
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FIG. 14. Frames from simulations of the fluid motion produced when a weighted box (upper left of the tank)
sinks into a tank of water. (a) The velocity field for the case where there is not artificial pressure. (b) The velocity
field when there is artificial pressure.

and box), and an experiment, shows that the SPH results typically have errors of∼5%.
The results also show convergence of the SPH simulation except for the details of the tip
of the plunging wave which are very sensitive to the resolution [16]. In Fig. 14, we show
the velocity of the SPH particles time 0.28 s when the box, which starts at a height 0.2 m,
has dropped to 0.1 m. Figure 14a shows the velocities with artificial pressure and Fig. 14b
shows them without artificial pressure. The pressure is initially positive, but it can become
negative in the tip of the plunging wave. The effect of the artificial pressure is entirely
negligible except near the tip of the plunging wave where it results in a more coherent tip.
The later development of the system is very similar with and without the artificial pressure.
Differences of roughly 1% are typical.
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6. SUMMARY

This paper has shown that a simple artificial stress term removes the tensile instability in
a wide variety of problems. In the case of a fluid the artificial stress is an artificial pressure
and we have shown how results from the short and long wavelength limit of the dispersion
relation can fix the parameters of the artificial pressure. The analysis indicates that the effect
of the artificial pressure on the long wavelength limit of the dispersion relation is negligible,
and this result is confirmed by detailed numerical calculations.

Applications to fluid dynamical problems show that the artificial pressure is effective
even in highly nonlinear problems such as extreme one-dimensional expansion with the
density decreasing by a factor of 5.

A simple generalisation of the artificial pressure idea to elastic body dynamics requires
the introduction of an artificial stress. In this paper the artificial stress has been constructed
by analogy to the artificial pressure and the resulting algorithm is effective. For example,
if the artificial stress is applied to the simulation of bouncing rubber rings, they do not
fracture. However, in this case, it is necessary to move the particles with an average velocity
to avoid the fracture even when the artificial stress is used.

MHD problems which also show a tensile instability arising from the magnetic stress
could also be treated by including an artificial stress term in the equations of motion.

APPENDIX

To integrate the set of equations describing the change of velocityv, densityρ, and
positionr given by

dv
dt
= F, (A1)

dr
dt
= v, (A2)

and

dρ

dt
= D, (A3)

we assume that we have the initial valuesv0, F0, r0, D0, and time step1t . The predictor
step is

v̂= v0+1tF0, (A4)

r = r0+1tv0+ 0.5(1t)2F0, (A5)

and

ρ̂= ρ0+1t D0. (A6)

New values ofF and D are calculated and corrected values ofv and ρ are calculated
according to

v= v̂+ 0.51t (F−F0), (A7)
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and

ρ= ρ̂+ 0.51t (D− D0). (A8)

The value ofr is not corrected. In a purely mechanical problem where only the velocity and
position are calculated the algorithm is equivalent to leap frog. In the present case, apart
from the way the position is integrated, the variables are integrated with a trapezoidal rule.
If the XSPH technique is used the right-hand side of Eq. (A2) is replaced by the form shown
in (4.14).
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